新闻动态
NEWS CENTER
NEWS CENTER
2020-05-22
关键词:大数据、战略、理论、资源基础理论(RBT)、组织学习(OL)
全球数字化的产品、流程和业务模型正在重塑着经营的本质。随着越来越多的企业利用用户点击量、传感设备、技术 创新等手段来推动业务增长,每个行业都得到了迅猛的发展。先进的信息技术、基础设施以及“物联网”的出现,使得企业可以寻找到创新的手段和方法来获取数据,并利用不断扩大、增加数据容量来推动企业的不断创新。
信息技术的进步使得数据存储能力日益强大,投资成本变得越来越可承受,为了不错过任何新的市场机遇,许多企业都在将信息技术及其规划整合到了他们的战略思维之中。
综合考虑信息技术进步所带来的这些变化,企业家们都会意识到,每个人或设备都成了潜在的数据生成器,例如,消 费者会在日常生活中留下大量的数字痕迹,这些痕迹遍布在购买杂货、服装、交通旅行、查阅资料、居家等过程中,几乎所有的个人活动都能生成数据。也就是说,个人生活几乎都留下了“可查询”的数字记录。
设备之间也一改过去单独作为工具 使用的“孤立”现象而被连接了起来,相互之间可以通讯、追溯、跟踪,并向企业价值链上的合作伙伴传输数据、共享信息。
当各类数据被汇集到组织中时,组织就成为了 “信息的处理器”。于是,这些组织开始投资引入大量的数据科学人才,并开始建设自己的数据分析体系和数据分析能力,以寻求挖掘数据中隐含的巨大价值,获得竞争优势。显而易见,在遵守并保护个人隐私的前提下,许多组织机构都希望获取更多的消费者数据,并试图解析这些数据中隐含的价值以用于他们自己的战略决策中。
由互联网和当前丰富的数字媒体生态系统所产生的大量数据而形成的“大数据”概念已经被大家认同和接受,这也预示着人们对大数据产生、增长、盈利和存在的重要性有了一定的认识。
战略理论家和大数据实践者都在努力解读大数据在“商业数字化”进程中所起到的作用;解读大数据举措如何影响组织内部的决策功能;解读大数据如何塑造全新的市场并为组织建立起独特的新战略,打破现行的传统壁垒。
许多行业的高管都非常关注大数据项目,并为此投入了大量的资源,希望借助信息数据来增加企业的营销影响力,做好产品选择和业务运行操作,增强企业的创新能力和市场开拓能力,也希望借助大数据开发来更好地监管、衡量和管理好各项业务工作。
不过,少数企业却将大数据看作是其制定战略决策的非比寻常的资源,他们认为,信息数据资源是许多现代 创新的源泉,这就使得以大数据为核心的创新商业模式进入了现代市场空间中,打破了长期存在于战略思维中的各种固有的 传统假设方式,有利于企业创造出全新的市场。
在理解大数据的出现将如何改变竞争本质时,战略管理领域的学者们将会 发挥出极其重要的作用。尽管此类论述早已开始,但是学者们尚未就“大数据在现代企业及战略管理层面将发挥哪些作用”建立起理论体系。
近期的一些研究表明,大数据有望为“组织科学”带来新的理论和实践指导,并有望在企业治理、领导力建设的新战略方法的发展过程中发挥出核心的作用。本文将通过众所周知的组织理论中的资源基础理论(RBT,Resource-Based Theory)的视角进行综合论述,期望引发更广泛的有关大数据管理理论的研究讨论。
资源基础理论(RBT)视角为大数据现身于战略决策奠定了必要的理论基础。基于大数据共有的特征,该理论框架主要关注大数据的不同应用,以满足高层决策者们不同的管理期望,也会兼顾到不同组织的基础设施、管理成熟性、发展阶段和实际的能力。资源基础理论(RBT)研究方法的目的在于让人们认识到战略管理领域需求的灵活多变性,以便对数据、技术和战略之间的相互作用能够做到全新的理解。
随着日甚一日的经济数字化,学术研究也必须要适应“更好地解析这些全新且独特有趣管理”的现状。此项研究最大益处在于激发对“围绕大数据进行企业战略整合”课题的关注,吸引更多、更广泛的企业家和学者参与其中,引发出更多的打破旧价值链理论模型的诞生,支持商业理念的重构及应用的正向发展,协调商业分析法与战略学术方法之间的有机关联。
此理论框架的提出,使得战略研究人员能够有依据去解决该领域里一些重要的问题,不仅为企业应用指明方向,也为学术性研究指出一条条可行的路径。
“大数据”(Big Data)一词专指描述由各种仪器、传感器或基于计算机的交易所生成的大型、多样化、复杂化的纵向数 据集。大数据技术用以应对无法使用传统方法或工具处理分析这些海量原始数据(结构化、半结构化、非结构化)所带来 的巨大挑战,希冀从中提取到应用所需要的有价值的结果。尽管“大数据”(Big Data) 一词的起源仍然存在争议,但大数据的概念已经引发了人们浓厚的兴趣,成功地成为一个蜚声中外的话题。在多数人的认识中,大数据中潜藏着提升行业竞争优势的丰富信息资源。
在这里,要准确理解大数据的发展和演进,首先就需要了解数据库管理和存储的发展历程。
在上世纪90年代,许多组织都使用关系型数据库(database)来收集、存储自己的数据,这些数据基本上都是结构化数据,与此同时发展起来的数据挖掘技术(Data Mining Techniques)则用来做数据的基本统计分析处理工作,以此得到了对不断增长的数据信息中的价值进行洞察的能力。
随着互联网的日益普及和长足发展,更多的数据类型、数据产生方式、数据采集方式、分析研究及开发应用被不断地创造出来,针对非结构化网页(web)内容文本数据的分析走到了前沿,成为数据分析的新挑战课题。这些非结构化数据,例如论坛、网络日志、社交网站、点击流数据日志等构架起了企业与客户之间的“对话”交互平台,一改传统“企业对客户”单向营销方式,成为一种“颠覆式”的新型营销手段。
越来越多的移动设备、传感器、支持互联网应用的小工具正在推动分析能力急速发展,促使企业组织陷入了一场“大数据”竞赛,以便应对“大数据” 收集、处理、分析和可视化等需求所带来的挑战。该挑战是艰巨的,因为这些“大数据”不同于以往的数据信息,其规模巨大,具有流动性强、移动化、传感器设备丰富多样等特点。可喜的是,这些创新技术的不断汇聚和由此产生的推动力将 会提高组织的能力,成为企业开创新竞争优势的来源,也会推动企业转变商业模式,打开了创新的新机会、新窗口。
在创新、运营效率提升等愿望的指引下,大数据投资出现了爆炸式增长。麦肯锡全球研究所预测到,大数据将给各个 行业都带来显著的好处,例如,仅仅是美国医疗行业,每年度就会有3000亿美元的业务与大数据投资有关,而在美国零售行业,大数据推动营业利润提高了 60%。未来10年,预计将会有大量的资源持续不断地流入到大数据项目中。
尽管企业在技术进步方面面临着种种挑战,不过,或许正是如此,一个专门从事大数据收集、存储、分析和解释的大 数据行业就如雨后春笋般地蓬勃发展了起来。众多初创公司忙着搭建大数据平台、开发大数据分析应用软件等,旨在通过 为公共、专业部门的客户提供大数据分析服务的同时,一步步发展、提升大数据分析工具和数据分析的能力,把以往的内部 数据分析的方法远远地甩在身后。
也正是因为如此,大数据研究机构也在世界各地的大学中层出不穷地涌现了出来,他们 致力于培养大数据人才,以便为这项日渐走强的业务储备更多的人力资源。从资本市场来看,大数据项目吸引投资达到9位 数(上亿美元)已经司空见惯,一个新兴的高科技行业就这样如火如荼地发展了起来。
迄今为止,大数据行业的许多知识都是由身处学术环境(大数据应用企业或大学、科研机构等)的数据科学家们通过 对大数据本质属性的研究、探索而获得的,他们将这些属性概括为8个V:数据量大(Volume)、速度快(Velocity).类型多 (Variety)、准确真实(Veracity)、可变(Variability)、“可行性”(Viability)、“可视化”(Visualization)、“价值 ”(Value)。为了 行文方便,我们简称这些属性为“8个V”。
早期的大数据概念建立在三个特性之上:体积(Volume)、速度(Velocity)和多样性(Variety)。
体积(Volume),代表数据量大,描述了大数据存在的规模。一些企业或组织,每小时、每天都会产生或收集到多达 1TB (Terabyte , 1TB=1024G_译者注)的数据,这是一种纯粹意义上的爆炸式数据增长。
事情到此才刚刚开始,随着社交媒体大规模的社会化趋势和技术的显著进步,数据量还在继续增长。可喜的是,存储技术的发展和存储成本的持续降低, 使得这些“海量”数据的存储管理在经济上更加可行。
第二个核心特性速度(Velocity)指的是:数据处理速度、存储速度和检索速度。伴随着越来越多的传感器的使用、 各种连接设备的不断引入以及全球范围内越来越多的软件应用,数据流转的速度越来越快。技术的日新月异,也使得在多媒体介质中追踪数据、直观地观察数据变为可能。
多样性(Variety)。除了我们熟悉的传统的软件程序产生的数据,更多的数据来自于网页(web)、网页日志文件、搜索 索引、社交媒体论坛、电子邮件、文档、传感器数据、图形、音频、视频片段、GPS信号等等,这些数据不同于我们熟悉的“传 统数据”,它们更多的是半结构化、非结构化的数据。
随着大数据现象日渐被重视,又有一些大数据特性被人们识别总结了出来,例如,越来越多的研究人员同意准确性 (Veracity)也是大数据的一个特性。“准确性”与数据质量紧密相关,为了确保数据的及时、准确、一致、完整等质量特性, 需要将数据质量划分为不同的维度进行分析研究。
另有一些学者认为可变性(Variability)是大数据的又一个重要特性,这是一种将数据变化本质作为研究的视角,是数据可变性问题的讨论基础。
就此而言,数据的定义、意义都在发生着深刻的变化,这一切变化均源于不断发展的媒体形式(博客、社交媒体、视频等) 及从中收集、整理、存储这些庞大的非结构化数据所带来的全新挑战。同理,一些人认为’数据相关性”是另外一个重要的因素。
相关性,或称可行性(Viability)关系到一种与企业决策相关联的数据分析方法,这种分析方法旨在选择一些分析数据来 预测组织决策的结果,这无疑对企业组织来说是非常重要的。还有,可视化(Visualization)也是大数据一个非常有潜力 的重要特性,该特征将数据分析结构进行了易于理解的描述。
最后要说的是越来越受关注的大数据价值(Value)这个特征。从战略角度来看,价值(Value)最能引发人们的对大数 据分析的兴趣,本质上,这个特征描述的是大数据的财务属性,即如何利用数据以财务收益或其他收入的方式(例如:运营效率、知识创新等)使得企业组织获得利益。